leetcode96 Unique Binary Search Trees-zh
# 96. 不同的二叉搜索树 (opens new window)
English Version (opens new window)
# 题目描述
给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?
示例:
输入: 3 输出: 5 解释: 给定 n = 3, 一共有 5 种不同结构的二叉搜索树: 1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
# 解法
假设 n 个节点存在二叉搜索树的个数是 G(n)
,1 为根节点,2 为根节点,...,n 为根节点,当 1 为根节点时,其左子树节点个数为 0,右子树节点个数为 n-1,同理当 2 为根节点时,其左子树节点个数为 1,右子树节点为 n-2,所以可得 G(n) = G(0) * G(n-1) + G(1) * (n-2) + ... + G(n-1) * G(0)
。
# Python3
class Solution:
def numTrees(self, n: int) -> int:
dp = [0] * (n + 1)
dp[0] = 1
for i in range(1, n + 1):
for j in range(i):
dp[i] += dp[j] * dp[i - j - 1]
return dp[-1]
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
# Java
class Solution {
public int numTrees(int n) {
int[] dp = new int[n + 1];
dp[0] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < i; ++j) {
dp[i] += dp[j] * dp[i - j - 1];
}
}
return dp[n];
}
}
1
2
3
4
5
6
7
8
9
10
11
12
2
3
4
5
6
7
8
9
10
11
12
# C++
class Solution {
public:
int numTrees(int n) {
vector<int> dp(n + 1);
dp[0] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < i; ++j) {
dp[i] += dp[j] * dp[i - j - 1];
}
}
return dp[n];
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
2
3
4
5
6
7
8
9
10
11
12
13
# Go
func numTrees(n int) int {
dp := make([]int, n+1)
dp[0] = 1
for i := 1; i <= n; i++ {
for j := 0; j < i; j++ {
dp[i] += dp[j] * dp[i-j-1]
}
}
return dp[n]
}
1
2
3
4
5
6
7
8
9
10
2
3
4
5
6
7
8
9
10
# ...
1
编辑 (opens new window)
上次更新: 2021/10/30, 12:58:38